ИНТЕНСИВНОСТЬ *µ-е* - РАСПАДОВ НА РАЗНЫХ ГЛУБИНАХ ПО ДАННЫМ БАКСАНСКОГО ПОДЗЕМНОГО СЦИНТИЛЛЯЦИОННОГО ТЕЛЕСКОПА^{*}

Совместно с В.Н. Бакатановым, Ю.Ф. Новосельцевым, М.В. Новосельцевой, Ю.В. Стенькиным

Потоки медленных мюонов под землей содержат информацию о спектре мюонов на данной глубине, о сечении фотоядерного взаимодействия мюонов и о количестве медленных пионов, рождающихся в ядерных каскадах. Наша работа посвящена измерению интенсивности μ -*e*-распадов на глубинах от 850 до 3000 *Ге* см⁻² на Баксанском подземном телескопе [1].

Методика регистрации μ -*е*-распадов на Баксанском подземном телескопе и предварительные результаты для глубины 850 $\Gamma c \cdot cm^{-2}$ опубликованы в работах [2-4]. В качестве мишени для останавливающихся мюонов использовалась вторая снизу горизонтальная плоскость телескопа (масса сцинтиллятора 42 *m*, толщина 22 $c \cdot cm^{-2}$). При наличии задержанного сигнала от этой плоскости запускалась развертка 10-лучевого осциллографа (МО) и вся кадровая информация (координаты сработавших детекторов, энерговыделения, времена и т. д.) записывалась в оперативную память on-line ЭВМ, а затем на магнитную ленту.

Исходя из топографии местности, мы выбрали четыре достаточно широких интервала углов θ и φ , соответствующих глубинам $H > 1500 \ \Gamma e \cdot c m^{-2}$. Для каждого интервала были вычислены ожидаемые потоки мюонов и их средние энергии *E*. Затем были вычислены эффективные глубины под плоской земной поверхностью *H*, на которых потоки мюонов, проходящих через плоский детектор, имеют такие же средние энергии *E*. Результаты приведены в таблице.

С помощью off-line ЭВМ было обработано ~ 10^5 событий с μ -*e*-распадами и столько же без распадов (т. е. проходящих мюонов). События, попавшие в заданные интервалы углов, а они составляют малую долю от всех событий, распечатывались и просматривались вручную. Это позволило исключить грубые ошибки в определении траекторий, вызванные имитациями (группами мюонов и пр.), и надежно определять класс событий^{**}. Количество μ -*e*-распадов в каждом событии определялось по осциллограммам МО. Полученные по осциллограммам амплитудный и временной спектры задержанных импульсов соответствуют ожидаемым для

^{*} Известия АН СССР, сер. физ., т. **49**, вып. 7, 1369(1985).

^{**} О разделении распадов на «атмосферные» и «локальные» см. [2].

θ	Т, ч	N_{μ} , u^{-1}	h г см ⁻²	Собы- тия	Е	N _{µ-e}	$R \cdot 10^{3}$	_ Е, ГэВ	Н , Гг см ⁻²
Без от- бора нап- равлений	95.8	24840	34.0	Ат. Лок.	0.87 1.19	2045 898	2.31 ± 0.06 0.75 ± 0.03	150	850
≥ 30°	1420	237 ± 7	27.2	Ат. Лок.	1.28 1.30	270 149	1.84 ± 0.17 1.00 ± 0.11	230 ± 23	+ 170 1640 - 150
≥ 40°	2367	47.5 ± 3	30.4	Ат. Лок.	1.96 1.41	105 71	1.25 ± 0.20 1.18 ± 0.21	290 ± 29	+ 520 2330 - 350
≥ 45°	2367	15 ± 1	33.1	Ат. Лок.	2.56 1.47	41 26	1.08 ± 0.28 1.20 ± 0.36	311 ± 31	+ 620 2680 - 480
≥ 50°	3033	3.5 ± 0.8	36.2	Ат. Лок.	2.94 1.35	15 11	1.0 ± 0.5 1.7 ± 0.9	325 ± 33	+ 1000 3000 - 560

Рис. 1. Зависимость R_{am} и R_{nok} от E. Светлые точки - экспериментальные данные для R_{nok} , черные точки - то же для R_{am} . Кривая 1- расчет для $R_{am}(E)$ с постоянным показателем γ , кривая 1' - то же, но с учетом уменьшения γ при низких энергиях. Кривая 2 - расчет для $R_{nok}(E)$ (только для π^+), кривая 2' - та же зависимость, нормированная на нашу экспериментальную точку при $E=150 \ \Gamma 3B$. Данные работ [14, 18] умножены на 0,7, так как в них не вводилась поправка на π^- , распавшиеся на лету

 μ -*е*-распадов в нашем детекторе [3].

Экспериментальное угловое распределение N_{μ} ($\geq \theta$) мюонов, проходящих через две внутренние плоскости в заданном интервале по φ (37.5 - 127.5°), приведено в таблице. Это распределение удовлетворительно согласуется с расчетным. Особую трудность представляет собой измерение углов прихода одиночного останавливающегося мюона, поскольку,

Рис. 2. Зависимость $R_{\Sigma} = R_{am} + R_{лок}$ от глубины. Кривые - расчет зависимости R_{Σ} от глубины под плоской поверхностью для трех случаев: 1 - сферический (изотропный) детектор, 2 - плоский детектор (горизонтальная плоскость), 3 - направленный (узкоугольный) детектор, измеряющий вертикальный поток. Рост R_{Σ} на глубинах $H > 6000 \ {\it Fe} \ cm^{-2}$ объясняется вкладом потока мюонов, рож денных нейтрино, для которого $R \sim 0.04$. Для сферического детектора вклад этого потока становится заметным на меньших глубинах

во-первых, низкоэнергичный мюон испытывает сильное кулоновское рассеяние и, во-вторых, измерять направление приходится по малой пролетной базе (~ 4 *м*). Для уменьшения влияния рассеяния мы потребовали обязательное прохождение мюоном плоскости, расположенной над плоскостью-мишенью и отделенной от нее перекрытием толщиной 150 $e \cdot cm^2$. В этом случае мы всегда имеем для проведения траектории две точки до того, как мюон достиг энергии ниже (300Sec θ) *МэВ*. Даже при таком требовании среднеквадратичный угол рассеяния равен $9.2^{\circ}\sqrt{Cos\theta}$. Пролетная база для определения направлений равна в этом случае 1/3 от средней длины траектории в телескопе для проходящих мюонов, что приводит к ухудшению

разрешения до ~ 6° (вместо 2°). Из-за круто падающего распределения $N_{i}(\theta)$ оба эти эффекта приводят к увеличению числа событий этого типа, на что вводилась коррекция эффективности регистрации соответствующая таких распадов. Эффективность регистрации μ -*e*-распадов (ε), вычисленная с учетом указанных выше эффектов, а также «пиллоу-эффекта» и доли π -мезонов, распадающихся в воздушном промежутке над плоскостью-мишенью (35%), приведена в таблице. Результаты эксперимента представлены в таблице. Зарегистрированное количество u-eраспадов $N_{\mu e}$ ($\geq \theta$) за время набора *T* показано в 7-м столбце таблицы, а в 8-м дан окончательный результат $R = 0.8 \frac{100}{\overline{h}} \frac{N_{\mu-e}/(\epsilon T)}{N_{\mu-e}}$, приведенный к 100 г·см⁻²

стандартного грунта. Средняя толщина детектора \overline{h} для каждого диапазона определялась экспериментально по угловому распределению проходящих мюонов. Подчеркнем, что интенсивность распадов, регистрируемых детектором, пропорциональна его массе M и не зависит от формы детектора. От формы детектора зависит отношение $R_{dem} \sim \frac{N_{\mu-e}}{N_{\mu}} \sim \frac{M}{S} \sim \overline{h}$ (не приведенное к стандартной толщине), поскольку стоящий в знаменателе поток проходящих мюонов N_{μ} пропорционален эффективной площади детектора S. Таким образом, \overline{h} определяется угловым распределением проходящих мюонов, поэтому попытки объяснения «туринэффекта» широким угловым распределением локально-рожденных мюонов [14, 19] или введением разных толщин детектора \overline{h}_{am} и \overline{h}_{nok} для регистрации атмосферных и

локально-рожденных *µ-е*-распадов [13] неверны. На рис. 1 экспериментальные данные сравниваются с расчетными зависимостями $R_{am}(\overline{E})$ и $R_{nok}(\overline{E})$. Из энергетического спектра мюонов под землей можно получить [7]: $R_{am}(\overline{E}) = \frac{100\alpha}{\overline{E}} \frac{\gamma}{\gamma - 1}$, где α - средние ионизационные потери мюонов на данной глубине, у - показатель интегрального спектра (кривые 1 и 1'). В работе [7] получено также $R_{\Pi OK}^{\pi^+}(\overline{E}) = 100 \ b_N \ n_0 \ (\overline{E})^{0.75}$, где b_N - потери мюона на ядерные взаимодействия в грунте. Расчет, проведенный с использованием зависимости числа останавливающихся пионов в ядерном каскаде от его энергии $m(E) = 0.8 \cdot E^{0.75}$ [8] и с учетом рождения пионов в различных электромагнитных процессах реальными фотонами (вклад ~ 10%), дал $n_0 = 0.67$. Сечения брались из [9-11]. Кривая 2 на рис. 1 показывает эту зависимость для случая, когда регистрируются только π^+ . Из наших данных был вычтен вклад π , распадающихся на лету; так как другие авторы этого не делали, их данные для $R_{\rm лок}$ умножены на 0.7. Экспериментальные точки для *R_{am}* хорошо ложатся на расчетную кривую 1', а точки для *R*_{лок} лежат ниже кривой 2 на ~ 35%. Нормированная кривая 2' служит хорошим фитом экспериментальной зависимости. Поскольку $R_{nok}(\overline{E}) \sim b_N n_0 \overline{E}^{0.75} \sim b_N \langle \overline{m(E)} \rangle$, где $\langle \overline{m(E)} \rangle$ есть среднее до спектру каскадов и по спектру мюонов, то можно предположить, что либо b_N , либо m(E), использованные в расчете, завышены. Считая

 $b_N = 0.41 \cdot 10^{-6} \ cm \cdot e^{-1}$ [9], можно получить $m(E) = 0.56 \ E^{0.75}$. Для числа останавливающихся пионов в электромагнитном каскаде получается зависимость вида $m_{\rm 2M}(E) = n_1 E = 0.0026 \ E \ (\Gamma \ni B)$. Эти функции дают полное число останавливающихся пионов обоих знаков. Видно, что $m(E) >> m_{\rm 3M}(E)$ и это делает возможным разделение ядерных и электромагнитных ливней по числу π - μ -e-распадов в них вплоть до очень больших энергий.

Зная соотношение между глубиной Н под плоской поверхностью и средней энергией мюонов Е на этой глубине, проходящих через детектор с определенной апертурой, от зависимости $R_{2}(E) = R_{am} + R_{nok}$, можно перейти к зависимости $R_{2}(H)$, показанной на рис. 2. Там же отложены экспериментальные данные разных авторов. Разброс экспериментальных точек может быть объяснен разницей в апертуре или, другими словами, разной эффективной глубиной для детекторов разной формы, находящихся на одной и той же вертикальной глубине. Единственным исключением являются точки туринской группы [5, 6, 12, 19] на всех глубинах > 60 Гг см⁻². На малых глубинах их данные получены отбором наклонных траекторий без ограничения снизу на энергию останавливающихся мюонов и без коррекции на рассеяние. Возможно, что основной эффект в этом эксперименте создавался рассеянными мюонами. На больших глубинах данные этой группы также, вероятно, содержат методические ошибки, так как результаты одного эксперимента, приводимые в разных работах [12, 19], отличаются в 3 раза. Совокупность всех экспериментальных данных говорит об отсутствии «турин-эффекта». Интенсивность локально-рожденных медленных мюонов оказалась даже на ~ 35% ниже расчетной на всех глубинах.

Литература

- 1. Алексеев Е. Н. и др. Изв. АН СССР. Сер. физ., 1980, т. 44, с. 609.
- 2. Бакатанов В. Н. и др. Изв. АН СССР. Сер. физ., 1980, т. 44, с. 618.
- 3. Bakatanov V. N. et al. Proc. 16th ICRC. Kyoto, 1979, v. 10, p. 175.
- 4. Bakatanov V. N. et al. Proc. 16th ICRC. Kyoto, 1979, v. 10, p. 179.
- 5. Baschiera B. et al. Lett. Nuovo Cim., 1970, v. 4, p. 121.
- 6. Baschiera B. et al. Lett. Nuovo Clm., 1971, v. 1, p. 961.
- 7. Алексеев Е. Н. и др. Изв. АН СССР. Сер. физ., 1973, т. 37, с. 1488;
- Изв. АН СССР. Сер. физ., 1974, т. **38**, с. 1093.
- 8. Jones W. V. et al. Phys. Rev., 1973, v. 7D, p. 2013.
- 9. Bezrukov L. B., Bugaev E. V. Proc. 17th ICRC. Paris, 1981, v. 7, p. 102;
 - Proc. 17th ICRC. Paris, 1981, v. 7, p. 90.
- 10. Хаякава С. Физика космических лучей. Ч. 1. М.: Мир, 1973.
- 11. Бугаев Э.В., Котов Ю.Д., Розенталь И.Л. Космические мюоны и нейтрино. М.: Атомиэдат, 1970, с. 15.
- 12. Baschiera B. et al. Proc. 14th ICRC. Munhen, 1975, v. 12, p. 4277.
- 13. Dadykin V. L. et al. Proc. 17th ICRC. Paris, 1981, v. 7, p. 187.
- 14. Bhat P.N., Ramana Murthy P.V. Proc. 12th ICRC. Hobart, 1971, v. 7, p. 2829;
 - Proc. 13th ICRC. Denver, 1973, v. 3, p. 1923.

- 15. Barton I. C., Slade M. Proc. 9th ICRC. London, 1965, v. 2, p. 1006.
- 16. Kropp W. R., Reines F., Woods R. M. Phys. Rev. Letts, 1968, v. 20, p. 1451.
- 17. Short A. M. Proc. Phys. Soc. (London), 1963, v. 81, p. 841.
- 18. Elbert I. W., Keuffel J. W., Thompson J. A. Phys. Rev. Letts, 1972, v. 29, p. 1270.
- 19. Bergamasco L. et al. Nuovo Cim., 1982, v. 67A, p. 255.